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Abstract—We explore the Maxwell model for viscoelasticity
with the aim of evaluating its efficacy in describing the properties
of animal muscle. While it succeeds in modeling the two-regime
frequency response of real muscle, we find that the Maxwell
model fails to accurately describe muscle’s step response, which
can be characterized by stretched exponential decays. In light
of this, we propose methods for modifying the Maxwell model
such that stretched exponentials solve the governing differential
equations. Additionally, we find that a fractional differential
operator is necessary for the production of stretched exponential
solutions; we discuss methods for dealing with such operators,
with applications to control theory and robotics.

I. INTRODUCTION

Animal muscle can, in one sense, be characterized by its
response to perturbations. Key parts of animals’ ability to
achieve stable legged locomotion can be attributed to the
passive response of their muscles, which can be much faster
than any conscious response [1]. It is of great interest to
control engineers to understand this perturbation response so
as to replicate the properties of animal muscles for applications
in robotics [2]. However, even state-of-the-art robotic actuators
fail to achieve the force, stiffness, and power generation
capabilities of real muscle.

There have been many mechanical models proposed for
muscle, a material which can be classified as viscoelastic
due its exhibition of both viscous and elastic characteristics
when undergoing deformation. The two simplest models of
viscoelasticity that still encapsulate some of the intricacies of
muscle’s response are the Voigt model (a spring and a damper
in parallel) and the Maxwell model (a spring and a damper
in series) [3]. While the Voigt model has achieved success
in modeling passive tissues [4], it fails to describe muscle’s
ability to dissipate elastic stresses over time [5], and we need
not spend time examining it.

The Maxwell model, on the other hand, is a serious can-
didate for describing the properties of muscle: it succeeds in
capturing the nature of real muscle in both the low-frequency
and high-frequency perturbation regimes. However, a recent
study has shown that, upon a step perturbation in length, the
force response of muscles can be characterized by stretched
exponentials, which are of the form F = exp( − tβ). It is
believed that this feature of muscle contributes to animals’
ability to stabilize themselves over long time periods. The
Maxwell model notably cannot produce such exponentials.

In this paper, we examine the properties of the Maxwell
model—first in the time domain and then in the Laplace
domain—with the aim of seeing why exactly it fails to produce

Fig. 1. Scenario of consideration: a mass m suspended from a Maxwell
material (spring and damper in series).

a stretched exponential response. We then explore methods of
modifying the Maxwell model in the hope of producing a more
muscle-like response; this takes us into the realm of fractional
calculus.

II. MAXWELL MATERIALS

The Maxwell model for a viscoelastic material is a spring
and a damper in series, shown in figure 1. The key finding of
this section is that Maxwell materials do not yield stretched-
exponential behavior and therefore do not capture one of the
key features of muscle dynamics. Nevertheless, it is interesting
to examine the governing equations of Maxwell materials in
order to see why they fail to produce stretched-exponential
solutions to a step input. Consider the mechanical system
depicted in figure 1: a mass suspended by Maxwell material.

The force balance equations for this system are:

ml̈ = mg − k(l − x)

bẋ = k(l − x)
(1)

To turn this into a system of coupled first-order differential
equations, we make the following definitions definitions:



l̇ = z

ż = g − γ(l − x)

ẋ = α(l − x)

(2)

where

α =
k

b
and γ =

k

m
(3)

The system of equations to solve then becomes: l̇ż
ẋ

 =

 0 1 0
−γ 0 γ
α 0 α

 lz
x

+

0
g
0

 (4)

Mathematica can solve this inhomogeneous system of equa-
tions fairly easily; the resulting solutions are essentially long
sums of exponentials that depend on g, γ, and α that are not
worth writing explicitly here. One key observation, however, is
that nowhere in the solutions is there a stretched exponential,
meaning that no matter how one tweaks the parameters it is
impossible to generate stretched exponential behavior with a
Maxwell material.

In order to get a better sense of the dependence of the system
dynamics on the parameters, it is useful to plug in values for
various combinations of g, γ, and α.

A. The baseline solution

To get a sense of the behavior of this system, we first set
all parameters to one:

g = α = γ = 1 (5)

In this case, the position l as a function of time t looks like:

l0(t) =

(
t− 2

3
e−t/2

√
3 sin

(√
3

2
t

))
(6)

A plot of the baseline solution is shown in figure 2. We
see that for short time scales the exponential term dominates,
leading to initial oscillations in the length. These oscillations
quickly subside (like e−t/2 for our selection of parameters),
however, and the length soon begins changing like t (at
a constant velocity). This can be interpreted physically as
the system hitting its terminal velocity. This interpretation is
bolstered by the solution to x(t), the position of the top end
of the spring. Mathematica gives:

x(t) =
(
t− e−t/2 × non-linear terms

)
(7)

The non-linearities in x(t) subside at the same rate as the
non-linearities in l(t), so after an amount of time t >> 2
we have l(t)− x(t) = 0, meaning the length of the spring is
constant and therefore no longer contributes to the evolution
of the system. As one would expect, the terminal velocity in
the t >> 2 regime is governed entirely by b, the damping
constant. We should note, however, that 2 is not a special
number, but rather an artifact of our specific choice for g, α,
and γ.

Fig. 2. Plot of l(t), the solution to equation 4 for g = α = γ = 1. We
see that, for short timescales, the length undergoes slight oscillations, and for
long timescales the length stretches linearly with time.

B. Dependence of l(t) on g

To determine the dependence of our solution l(t) on g, we
have Mathematica solve our system of equations for α = γ =
1. The resulting solution is:

l(t) = g

(
t− 2

3
e−t/2

√
3 sin

(√
3

2
t

))
l(t) = g l0(t)

(8)

This tells us that our system response scales linearly with the
strength of the gravitational field, which makes intuitive sense
and serves as a nice sanity check. Quadratic or logarithmic
dependence on g would make for a very strange world.

C. Dependence of l(t) on γ

When g = α = 1,Mathematica returns a very long and
messy looking equation. The easiest way to understand how γ
affects our system is to plot l(t) for different values of γ and
compare visually. This plot is shown in figure 3, which shows
a correlation between γ and both the frequency and duration
of the transient oscillations in the response. Additionally, it
appears as if there is a nonlinear correlation between γ and
the magnitude of the response.

While it would be unhelpful to write the exact equation for
l(t) here, looking at the general form of the equation elucidates
the origin of these correlations. Essentially, the length depends
on time and γ like

l(t) =
1

γ

(
t+ 1− 1

γ

)
+

f(γ)e−t/2
(
e(1+

√
1−4γ) + e(−1+

√
1−4γ)

)
(9)

where f(γ) has a pole at γ = 0 and γ = 1/4. The radical in
the exponential tells us that, for γ > 1/4, the system undergoes
oscillations with frequency:



Fig. 3. Plot of l(t), the solution to equation 4, for various values of γ with
g = α = 1.

ω =
1

2

√
4γ − 1 (10)

This explains the frequency of
√

3/2 we saw in the baseline
solution l0(t), where γ was set to one.

One additional point of consideration is to compare our
system with other similar systems. A normal spring-mass
system has an oscillation frequency:

ω =

√
k

m
=
√
γ (11)

In a parallel spring-mass-damper (SMD) system, the fre-
quency of oscillation is given by:

ω =
1

2

√
4γ − b2 (12)

We have yet to see our system’s dependence on α, which
carries the factor of b, but already we can see that in the small
t limit our system behaves similarly to a spring and damper
in parallel.

D. Dependence of l(t) on α

Having noted the similar γ-dependence between equations
10 and 12, we could naively expect α to affect the transient
response of our system similar to how it affects the parallel
SMD. However, the opposite is the case. When we ask
Mathematica to solve our differential equations for g = 1
it returns:

l(t) = f(α, γ)e−t/2
(
e(α+
√
α2−4γ) + e(−α+

√
α2−4γ)

)
(13)

Figure 4 shows how l(t) depends on α with γ = 1. Contrary
to the parallel SMD system, smaller values of α (i.e. higher
ratios of damping to spring stiffness) yield faster and longer-
lasting oscillations in our system (a series SMD).

This observation makes more sense if we imagine the
physical picture: for high values of damping compared to
stiffness (low α), the mass will only feel the spring, and will
therefore undergo normal harmonic oscillations but with slow-
timescale perturbations due to the movement of the damper.

Fig. 4. Plot of l(t), the solution to equation 4, for various values of α with
g = γ = 1.

For high α, the mass will primarily feel the damper, and will
fall at terminal velocity but with high-frequency (dependent
on γ) perturbations due to the spring.

III. LAPLACE-DOMAIN SOLUTIONS

While it was all fun and good to represent our equations
in the time-domain and have Mathematica sort through the
ugliness, the dynamics of a mass suspended from a Maxwell
material (figure 1) can be solved much more elegantly in the
Laplace domain. Our initial equations:

l̈ = g − γ(l − x)

ẋ = α(l − x)
(14)

can be transformed into the Laplace domain:

s2 l̂(s) =
g

s
− γ(l̂(s)− x̂(s))

sx̂(s) = α(l̂(s)− x̂(s))
(15)

These can easily be rearranged to get expressions for x̂(s)
and l̂(s) in terms of the fundamental parameters:

l̂(s) =
(s+ α)g

s4 + αs3 + γs2

x̂(s) =
αg

s4 + αs3 + γs2

(16)

These three equations (14 - 16) produce the same results
that Mathematica did but in a much more illuminating form.
As a sanity check, we can convert the equation for l̂(s) into
the time domain for g = α = γ = 1. The result is:

l(t) =

(
t− 2

3
e−t/2

√
3 sin

(√
3

2
t

))
(17)

This is identical to equation 6, meaning our Laplace-domain
representation is correct.



Fig. 5. A Maxwell material subject to an external position source that
determines l(t).

A. Step Response of Maxwell Material

Next, it is useful to consider the step response of our
Maxwell material from figure 1. This result can be compared
to the step response of muscle to gain an understanding of the
efficacy of our the Maxwell model in describing the properties
of muscle. In this case, our scenario is similar to the one
studied in section II, but with several simplifying changes.
This new system is shown in figure 5.

The mass has been replaced by a position source (infinitely
strong and rigid) and the variable of consideration has become
x(t), the position of the connection point between the spring
and the damper. Typically, one would measure the output force
produced by the body to characterize the material. However,
we know the force to be F = k(l(t) − x(t)), and since
we control l(t) for all time, it suffices to solve for the step
response of x(t). In contrast to the suspended mass scenario,
there is only one relevant equation here:

ẋ = α(l − x) (18)

We’ll skip the time-domain nonsense and go straight to the
Laplace domain.

sx̂(s) = α(l̂(s)− x̂(s)) (19)

x̂(s) =
α

s+ α
l̂(s) (20)

So the transfer function for this system is:

Ĥ(s) =
α

s+ α
(21)

To determine the step response, we multiply our transfer
function by l̂(s) = 1/s:

x̂(s) = Ĥ(s)
1

s
=

α

s2 + αs
(22)

Converting to time domain, the solution is:

x(t) = 1− e−αt (23)

In terms of the force on the position source, this translates
to

F = ke−αt (24)

for t > 0. In equation 24 we have derived the well-known
force response of a Maxwell material to a step input. There
are two things to note: the force is proportional to the spring
constant k, and the force decays to zero with a timescale
determined solely by α. The first observation is no surprise,
given that springs can be seen as mechanical computers that
convert positions to forces, and since l(t) is constant for t > 0,
the force will be purely proportional to x(t). The second
observation makes sense in light of dimensional analysis. We
have:

[g] =
m

s2
[k] =

kg

s2
[b] =

kg

s
(25)

[α] =
[k]

[b]
=

1

s
[γ] =

[k]

[m]
=

1

s2
(26)

Since α is the only constant with units of frequency, it has
to be the constant that appears next to t in exponentials. It
is also possible to have a square root of γ appear, as seen in
equation 9, but γ is no longer relevant since we switched to
the scenario depicted in figure 5.

Having gone through a comprehensive derivation of the
properties of a Maxwell material, we can now safely say
that the Maxwell model does not encapsulate the stretched
exponential response known to characterize real muscle.

IV. STRETCHED EXPONENTIALS

As described in the introduction, it is believed that a
stretched-exponential response to a step perturbation in length
is one of the defining characteristics of animal muscle. From
the perspective of a control theorist who attempts to mimic the
properties of muscle for use in robotics applications, the ques-
tion becomes: what kinds of controllers give rise to stretched-
exponential responses? Or, more mathematically, what kinds
of differential equations yield stretched exponentials as their
solutions?



A. The Naive Approach

One approach that some might call naive (because it is
accessible to the mathematical lay-person), is to look for the
generating equations of the Taylor expansion of a stretched
exponential. Unfortunately, we are concerned with solutions
that are valid for arbitrarily long amounts of time, in which
case a Taylor series is not a simplification. The goal here,
however, is to gain insight into what makes a stretched
exponential unique, and then use that information to guide
our development of its governing differential equations. The
solution we hope to generate is:

f(t) = 1− e−t
β

0 < β < 1 (27)

This can be written as:

1− e−t
β

= 1−
∑
k=0

(−1)k
(tβ)k

k!
(28)

= tβ − t2β

2
+
t3β

6
− . . . (29)

Additionally, we know the Laplace transform:

L{tα} =
Γ(1 + α)

s1+α
(30)

Where Γ is the gamma function, defined as:

Γ(z) =

∫ ∞
0

xz−1e−xdx (31)

For z ∈ Z, this reduces to:

Γ(z) = (z − 1)! (32)

In our case, we can now represent the stretched-exponential
function as:

L{1− e−t
β

} =
1

s
−
∑
k=0

(−1)k
Γ(1 + kβ)

k! s1+kβ
(33)

Recall, our goal is to find D, a generalized differential
operator, such that:

Df(t) = Θ(t) (34)

Where f(t) is a stretched exponential (equation 27) and
Θ(t) is the Heaviside step function. In the Laplace domain,
this translates to finding Ĥ(s) such that:

f̂(s) = Ĥ(s)
1

s
(35)

f̂(s) is plugged in from equation 33, changing the lower
limit of the sum so as to get rid of the leading 1, we get:∑

k=1

(−1)k
Γ(1 + kβ)

k! s1+kβ
= Ĥ(s)

1

s
(36)

Ĥ(s) =
∑
k=1

(−1)k
Γ(1 + kβ)

k! skβ
(37)

To a control engineer, this problem is now somewhat solved.
All one has to do is devise a system such that the transfer
function is the one described by equation 37—easier said than
done. In the limiting case that β = 1, we have:

Ĥ(s) =
∑
k=1

(−1)k
Γ(1 + k)

k! sk
=
∑
k=1

(−1)k
1

sk
(38)

This is simply a geometric series, which has the well-known
solution:

Ĥ(s) =
1

s+ 1
(39)

Plugged into equation 35:

f̂(s) =
1

s+ 1

(
1

s

)
(40)

sf̂(s) + f̂(s) =
1

s
(41)

Converted back to time domain, we have:

d

dt
f(t) + f(t) = Θ(t) −→ D =

d

dt
+ 1 (42)

This corresponds with our analysis of the Maxwell model,
which was found to generate exponential decay from the
governing equations:

d

dt
x(t) + αx(t) = αΘ(t) (43)

Based on this limiting cases, we can make the educated
guess that for a general β such that 0 < β < 1:

D =
1

αβ
dβ

dtβ
+ 1 (44)

where dβ is some fractional differential operator and α =
k/m was reintroduced to make the units work out. Compar-
ing this to equation 18, our new physical system might be
described by:

dβ

dtβ
x(t) = αβ(Θ(t)− x(t)) (45)

Of course, it is necessary to define which fractional deriva-
tive to use in order to verify that a stretched exponential
function satisfies this equation.

B. The Rigorous Approach

Another way to approach the problem of finding differential
equations that produce stretched exponentials is to use rigorous
mathematics. Obviously, this is the ideal way to solve this
problem, but this method is also incredibly complicated.
Gorska et al. (2017) tackle this problem in this fashion in their
paper, ”The stretched exponential behavior and its underlying
dynamics. The phenomenological approach” [6]. They obtain
the equation

C∂αx gα(Tα, x) + ∂Tαgα(Tα, x) = 0 (46)



where gα(Tα, x) is essentially the Laplace transform of
exp(−tα) with x as the complex variable of integration, and
C∂αx refers to the Caputo fractional derivative:

C∂αx f(x) =
1

Γ(1− α)

∫ x

0

f ′(y)

(x− y)α
dy (47)

This is a much more general result than the one derived in
the previous section, which holds only for the specific case of
a Heaviside step input. It is difficult to see similarities between
this equation and equation 45, but, very loosely, we see that
both equations prescribe a fractional differential operator as a
necessity for producing stretched exponentials. The physical
interpretation of this finding is unclear. Equation 44 suggests
that the spring like properties of the Maxwell model remain
unchanged while the damper needs to be replaced by a device
which generates a response proportional to the fractional
derivative of position with respect to time. Implementing
this in a real control system would be difficult, as there is
no known mechanical or electrical device that produces this
response. The most likely solution is to approximate fractional
derivatives with a combination of purely linear devices.

V. CONCLUSION

We have explored the Maxwell model in considerable depth,
concluding that, while it successfully characterizes the two-
regime frequency response of real muscle, it fails to produce
stretched exponential functions when subject to a step input. In
this regard, it fails to accurately describe the feature of muscle
that is believed to contribute to animals’ ability to stabilize
themselves over long timescales. To address this shortcoming,
we then explored modifications to the Maxwell model in order
to produce a stretched exponential response. Using a naive
mathematical method (i.e. not proved rigorously), we came
to the conclusion that a fractional differential operator was
necessary. Our findings point to future work in producing
approximation methods for fractional differential operators
(for applications in the physical world), as well as develop-
ing rigorous methods for dealing with fractional differential
equations and their solutions.
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[6] K. Górska, A. Horzela, K. A. Penson, G. Dattoli, and G. H. Duchamp,
“The stretched exponential behavior and its underlying dynamics. the
phenomenological approach,” Fractional Calculus and Applied Analysis,
vol. 20, no. 1, pp. 260–283, 2017.


